Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Environ Toxicol Chem ; 43(4): 896-914, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411227

RESUMEN

Known for their high stability and surfactant properties, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of manufactured products. Despite being largely phased out due to concerns regarding their persistence, bioaccumulation, and toxicity, legacy PFAS such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid continue to persist at high levels in the environment, posing risks to aquatic organisms. We used high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact zebrafish (Danio rerio) embryos to investigate the metabolic pathways altered by PFOS both before and after hatching (i.e., 24 and 72 h post fertilization [hpf], respectively). Assessment of embryotoxicity found embryo lethality in the parts-per-million range with no significant difference in mortality between the 24- and 72-hpf exposure groups. Metabolic profiling revealed mostly consistent changes between the two exposure groups, with altered metabolites generally associated with oxidative stress, lipid metabolism, energy production, and mitochondrial function, as well as specific targeting of the liver and central nervous system as key systems. These metabolic changes were further supported by analyses of tissue-specific production of reactive oxygen species, as well as nontargeted mass spectrometric lipid profiling. Our findings suggest that PFOS-induced metabolic changes in zebrafish embryos may be mediated through previously described interactions with regulatory and transcription factors leading to disruption of mitochondrial function and energy metabolism. The present study proposes a systems-level model of PFOS toxicity in early life stages of zebrafish, and also identifies potential biomarkers of effect and exposure for improved environmental biomonitoring. Environ Toxicol Chem 2024;43:896-914. © 2024 SETAC.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Animales , Pez Cebra/metabolismo , Ácidos Alcanesulfónicos/toxicidad , Ácidos Alcanesulfónicos/metabolismo , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Metabolómica
2.
J Vis Exp ; (203)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38284546

RESUMEN

Histone proteins are highly abundant and conserved among eukaryotes and play a large role in gene regulation as a result of structures known as posttranslational modifications (PTMs). Identifying the position and nature of each PTM or pattern of PTMs in reference to external or genetic factors allows this information to be statistically correlated with biological responses such as DNA transcription, replication, or repair. In the present work, a high-throughput analytical protocol for the detection of histone PTMs from biological samples is described. The use of complementary liquid chromatography, trapped ion mobility spectrometry, and time-of-flight mass spectrometry (LC-TIMS-ToF MS/MS) enables the separation and PTM assignment of the most biologically relevant modifications in a single analysis. The described approach takes advantage of recent developments in dependent data acquisition (DDA) using parallel accumulation in the mobility trap, followed by sequential fragmentation and collision-induced dissociation. Histone PTMs are confidently assigned based on their retention time, mobility, and fragmentation pattern.


Asunto(s)
Histonas , Espectrometría de Masas en Tándem , Histonas/metabolismo , Espectrometría de Masas en Tándem/métodos , Código de Histonas , Espectrometría de Movilidad Iónica , Cromatografía Liquida , Procesamiento Proteico-Postraduccional
3.
Anal Chem ; 95(49): 18039-18045, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38047498

RESUMEN

α-Synuclein is an intrinsically disordered protein that plays a critical role in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Proteomics studies of human brain samples have associated the modification of the O-linked N-acetyl-glucosamine (O-GlcNAc) to several synucleinopathies; in particular, the position of the O-GlcNAc can regulate protein aggregation and subsequent cell toxicity. There is a need for site specific O-GlcNAc α-synuclein screening tools to direct better therapeutic strategies. In the present work, for the first time, the potential of fast, high-resolution trapped ion mobility spectrometry (TIMS) preseparation in tandem with mass spectrometry assisted by an electromagnetostatic (EMS) cell, capable of electron capture dissociation (ECD), and ultraviolet photodissociation (213 nm UVPD) is illustrated for the characterization of α-synuclein positional glycoforms: T72, T75, T81, and S87 modified with a single O-GlcNAc. Top-down 213 nm UVPD and ECD MS/MS experiments of the intact proteoforms showed specific product ions for each α-synuclein glycoforms associated with the O-GlcNAc position with a sequence coverage of ∼68 and ∼82%, respectively. TIMS-MS profiles of α-synuclein and the four glycoforms exhibited large structural heterogeneity and signature patterns across the 8+-15+ charge state distribution; however, while the α-synuclein positional glycoforms showed signature mobility profiles, they were only partially separated in the mobility domain. Moreover, a middle-down approach based on the Val40-Phe94 (55 residues) chymotrypsin proteolytic product using tandem TIMS-q-ECD-TOF MS/MS permitted the separation of the parent positional isomeric glycoforms. The ECD fragmentation of the ion mobility and m/z separated isomeric Val40-Phe94 proteolytic peptides with single O-GlcNAc in the T72, T75, T81, and S87 positions provided the O-GlcNAc confirmation and positional assignment with a sequence coverage of ∼80%. This method enables the high-throughput screening of positional glycoforms and further enhances the structural mass spectrometry toolbox with fast, high-resolution mobility separations and 213 nm UVPD and ECD fragmentation capabilities.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Espectrometría de Masas en Tándem/métodos , Enfermedad de Parkinson/metabolismo , Péptidos/metabolismo , Proteolisis , Péptido Hidrolasas/metabolismo
4.
Front Immunol ; 14: 1259998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022533

RESUMEN

Opiate abuse increases the risk of HIV transmission and exacerbates HIV neuropathology by increasing inflammation and modulating immune cell function. Exosomal EVs(xEV) contain miRNAs that may be differentially expressed due to HIV infection or opiate abuse. Here we develop a preliminary exosomal-miRNA biomarker profile of HIV-infected PBMCs in the context of opiate use. PBMCs infected with HIV were treated with increasing dosages of morphine for 72 hours, the culture supernatants were collected, and the exosomes isolated using differential centrifugation. Exosomal miRNAs were extracted, expression levels determined via Nanostring multiplexed microRNA arrays, and analyzed with Webgestalt. The effect of the exosomes on neuronal function was determined by measuring calcium. Preliminary findings show that HIV-1 infection altered the miRNA profile of PBMC-derived EVs concurrently with opiate exposure. MicroRNA, hsa-miR-1246 was up-regulated 12-fold in the presence of morphine, relative to uninfected control. PBMCs infected with HIV-1 MN, an X4-tropic HIV-1 strain and exposed to morphine, displayed a trend which suggests potential synergistic effects between HIV-1 infection and morphine exposure promoting an increase in viral replication. Dose-dependent differences were observed in miRNA expression as a result of opiate exposure. The xEVs derived from PBMCs exposed to morphine or HIV modulated neuronal cell function. SH-SY5Y cells, treated with xEVs derived from ART-treated PBMCs, exhibited increased viability while for SH-SY5Ys exposed to xEVs derived from HIV-1 infected PBMCs viability was decreased compared to the untreated control. Exposing SH-SY5Y to xEVs derived from HIV-infected PBMCs resulted in significant decrease in calcium signaling, relative to treatment with xEVs derived from uninfected PBMCs. Overall, HIV-1 and morphine induced differential miRNA expression in PBMC-derived exosomes, potentially identifying mechanisms of action or novel therapeutic targets involved in opiate use disorder, HIV neuropathology, TNF signaling pathway, NF-κB signaling pathway, autophagy, and apoptosis in context of HIV infection.


Asunto(s)
Vesículas Extracelulares , Infecciones por VIH , Seropositividad para VIH , VIH-1 , MicroARNs , Neuroblastoma , Alcaloides Opiáceos , Trastornos Relacionados con Opioides , Humanos , VIH-1/fisiología , Infecciones por VIH/metabolismo , Alcaloides Opiáceos/metabolismo , Leucocitos Mononucleares/metabolismo , Neuroblastoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Morfina/farmacología
5.
PLoS Negl Trop Dis ; 17(9): e0011640, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729234

RESUMEN

The blood-sucking hemipteran Rhodnius prolixus is one of the main vectors of Chagas disease, a neglected tropical disease that affects several million people worldwide. Consuming a blood meal and mating are events with a high epidemiological impact since after each meal, mated females can lay fertile eggs that result in hundreds of offspring. Thus, a better knowledge of the control of R. prolixus reproductive capacity may provide targets for developing novel strategies to control vector populations, thereby reducing vector-host contacts and disease transmission. Here, we have used a combination of gene transcript expression analysis, biochemical assays, hormone measurements and studies of locomotory activity to investigate how mating influences egg development and egg laying rates in R. prolixus females. The results demonstrate that a blood meal increases egg production capacity and leads to earlier egg laying in mated females compared to virgins. Virgin females, however, have increased survival rate over mated females. Circulating juvenile hormone (JH) and ecdysteroid titers are increased in mated females, a process mainly driven through an upregulation of the transcripts for their biosynthetic enzymes in the corpus allatum and ovaries, respectively. Mated females display weaker locomotory activity compared to virgin females, mainly during the photophase. In essence, this study shows how reproductive output and behaviour are profoundly influenced by mating, highlighting molecular, biochemical, endocrine and behavioral features differentially expressed in mated and virgin R. prolixus females.


Asunto(s)
Enfermedad de Chagas , Parásitos , Rhodnius , Animales , Femenino , Humanos , Rhodnius/fisiología , Reproducción , Oviposición/fisiología
6.
Anal Chem ; 95(22): 8417-8422, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37220214

RESUMEN

There is a growing demand for lower-cost, benchtop analytical instruments with complementary separation capabilities for the screening and characterization of biological samples. In this study, we report on the custom integration of trapped ion mobility spectrometry and ultraviolet photodissociation capabilities in a commercial Paul quadrupolar ion trap multistage mass spectrometer (TIMS-QIT-MSn UVPD platform). A gated TIMS operation allowed for the accumulation of ion mobility separated ion in the QIT, followed by a mass analysis (MS1 scan) or m/z isolation, followed by selected collision induced dissociation (CID) or ultraviolet photodissociation (UVPD) and a mass analysis (MS2 scan). The analytical potential of this platform for the analysis of complex and labile biological samples is illustrated for the case of positional isomers with varying PTM location of the histone H4 tryptic peptide 4-17 singly and doubly acetylated and the histone H3.1 tail (1-50) singly trimethylated. For all cases, a baseline ion mobility precursor molecular ion preseparation was obtained. The tandem CID and UVPD MS2 allowed for effective sequence confirmation as well as the identification of reporter fragment ions associated with the PTM location; a higher sequence coverage was obtained using UVPD when compared to CID. Different from previous IMS-MS implementation, the novel TIMS-QIT-MSn UVPD platform offers a lower-cost alternative for the structural characterization of biological molecules that can be widely disseminated in clinical laboratories.


Asunto(s)
Espectrometría de Movilidad Iónica , Rayos Ultravioleta , Espectrometría de Masas/métodos , Péptidos/química , Iones , Histonas
7.
8.
Phys Chem Chem Phys ; 25(13): 9500-9512, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36938969

RESUMEN

Lanthanides have been frequently used as biomimetic compounds for NMR and fluorescence studies of Ca2+ binding proteins due to having similar physical properties and coordination geometry to Ca2+ ions. Here we report that a member of the neuronal calcium sensor family, neuronal calcium sensor 1, complexes with two lanthanide ions Tb3+ and Eu3+. The affinity for Tb3+ is nearly 50 times higher than that for Ca2+ (Kd,Tb3+ = 0.002 ± 0.0001 µM and Kd, Ca2+ = 91 nM) whereas Eu3+ binding is notably weaker, Kd,Eu3+ = 26 ± 1 µM. Interestingly, despite having identical charge and similar ionic radii, Tb3+ and Eu3+ ions exhibit a distinct binding stoichiometry for NCS1 with one Eu3+ and two Tb3+ ions bound per NCS1 monomer, as demonstrated in fluorescence titration and mass spectrometry studies. These results suggest that the lanthanides' affinity for the individual EF hands is fine-tuned by a small variation in the ion charge density as well as EF hand binding loop amino acid sequence. As observed previously for other lanthanide:protein complexes, the emission intensity of Ln3+ is enhanced upon complexation with the protein, likely due to the displacement of water molecules by oxygen atoms from the coordinating amino acid residues. The overall shape of the Tb3+NCS1 and Eu3+NCS1 monomer shows high levels of similarity compared to the Ca2+ bound protein based on their collision cross section. However, the distinct occupation of EF hands impacts NCS1 oligomerization and affinity for the D2R peptide that mimics the NCS1 binding site on the D2R receptor. Specifically, the Tb3+NCS1 complex populates the dimer and has comparable affinity for the D2R peptide, whereas Eu3+ bound NCS1 remains in the monomeric form with a negligible affinity for the D2R peptide.


Asunto(s)
Elementos de la Serie de los Lantanoides , Secuencia de Aminoácidos , Sitios de Unión , Iones , Elementos de la Serie de los Lantanoides/química , Péptidos/química , Proteínas Sensoras del Calcio Neuronal
9.
Chem Res Toxicol ; 36(4): 660-668, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37000908

RESUMEN

Here, we reported a spontaneous reaction between anticancer drug doxorubicin and GTP or dGTP. Incubation of doxorubicin with GTP or dGTP at 37 °C or above yields a covalent product: the doxorubicin-GTP or -dGTP conjugate where a covalent bond is formed between the C14 position of doxorubicin and the 2-amino group of guanine. Density functional theory calculations show the feasibility of this spontaneous reaction. Fluorescence imaging studies demonstrate that the doxorubicin-GTP and -dGTP conjugates cannot enter nuclei although they rapidly accumulate in human SK-OV-3 and NCI/ADR-RES cells. Consequently, the doxorubicin-GTP and -dGTP conjugates are less cytotoxic than doxorubicin. We also demonstrate that doxorubicin binds to ATP, GTP, and other nucleotides with a dissociation constant (Kd) in the sub-millimolar range. Since human cells contain millimolar levels of ATP and GTP, these results suggest that doxorubicin may target ATP and GTP, energy molecules that support essential processes in living organisms.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Nucleótidos de Desoxiguanina/metabolismo , Guanosina Trifosfato/metabolismo , Adenosina Trifosfato
10.
Environ Sci Technol ; 57(6): 2672-2681, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36724500

RESUMEN

Dissolved Organic Matter (DOM) is an important component of the global carbon cycle. Unscrambling the structural footprint of DOM is key to understand its biogeochemical transformations at the mechanistic level. Although numerous studies have improved our knowledge of DOM chemical makeup, its three-dimensional picture remains largely unrevealed. In this work, we compare four solid phase extracted (SPE) DOM samples from three different freshwater ecosystems using high resolution mobility and ultrahigh-resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FT-ICR MS/MS). Structural families were identified based on neutral losses at the level of nominal mass using continuous accumulation of selected ions-collision induced dissociation (CASI-CID)FT-ICR MS/MS. Comparison of the structural families indicated dissimilarities in the structural footprint of this sample set. The structural family representation using Cytoscape software revealed characteristic clustering patterns among the DOM samples, thus confirming clear differences at the structural level (Only 10% is common across the four samples.). The analysis at the level of neutral loss-based functionalities suggests that hydration and carboxylation are ubiquitous transformational processes across the three ecosystems. In contrast, transformation mechanisms involving methoxy moieties may be constrained in estuarine systems due to extensive upstream lignin biodegradation. The inclusion of the isomeric content (mobility measurements at the level of chemical formula) in the structural family description suggests that additional transformation pathways and/or source variations are possible and account for the dissimilarities observed. While the structural character of more and diverse types of DOM samples needs to be assessed and added to this database, the results presented here demonstrate that Graph-DOM is a powerful tool capable of providing novel information on the DOM chemical footprint, based on structural interconnections of precursor molecules generated by fragmentation pathways and collisional cross sections.


Asunto(s)
Materia Orgánica Disuelta , Espectrometría de Masas en Tándem , Humanos , Ecosistema , Agua Dulce
11.
Sci Rep ; 12(1): 20426, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443489

RESUMEN

Juvenile hormone (JH) is synthesized by the corpora allata (CA) and controls development and reproduction in insects. Therefore, achieving tissue-specific expression of transgenes in the CA would be beneficial for mosquito research and control. Different CA promoters have been used to drive transgene expression in Drosophila, but mosquito CA-specific promoters have not been identified. Using the CRISPR/Cas9 system, we integrated transgenes encoding the reporter green fluorescent protein (GFP) close to the transcription start site of juvenile hormone acid methyl transferase (JHAMT), a locus encoding a JH biosynthetic enzyme, specifically and highly expressed in the CA of Aedes aegypti mosquitoes. Transgenic individuals showed specific GFP expression in the CA but failed to reproduce the full pattern of jhamt spatiotemporal expression. In addition, we created GeneSwitch driver and responder mosquito lines expressing an inducible fluorescent marker, enabling the temporal regulation of the transgene via the presence or absence of an inducer drug. The use of the GeneSwitch system has not previously been reported in mosquitoes and provides a new inducible binary system that can control transgene expression in Aedes aegypti.


Asunto(s)
Aedes , Corpora Allata , Animales , Aedes/genética , Hormonas Juveniles , Animales Modificados Genéticamente , Drosophila , Proteínas Fluorescentes Verdes/genética , Expresión Génica
12.
J Am Soc Mass Spectrom ; 33(12): 2203-2214, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36371691

RESUMEN

Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics. Extended comparisons employing different FT-ICR MS instruments with qualitative direct infusion analysis are scarce since the majority of detected compounds cannot be quantified. The extent to which observations can be reproduced by different laboratories remains unknown. We set up a preliminary study which encompassed a set of 17 laboratories around the globe, diverse in instrumental characteristics and applications, to analyze the same sets of extracts from commercially available standard human blood plasma and Standard Reference Material (SRM) for blood plasma (SRM1950), which were delivered at different dilutions or spiked with different concentrations of pesticides. The aim of this study was to assess the extent to which the outputs of differently tuned FT-ICR mass spectrometers, with different technical specifications, are comparable for setting the frames of a future DI-FT-ICR MS ring trial. We concluded that a cluster of five laboratories, with diverse instrumental characteristics, showed comparable and representative performance across all experiments, setting a reference to be used in a future ring trial on blood plasma.

13.
Anal Chem ; 94(44): 15377-15385, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36282112

RESUMEN

Post-translational modifications (PTMs) on intact histones play a major role in regulating chromatin dynamics and influence biological processes such as DNA transcription, replication, and repair. The nature and position of each histone PTM is crucial to decipher how this information is translated into biological response. In the present work, the potential of a novel tandem top-"double-down" approach─ultraviolet photodissociation followed by mobility and mass-selected electron capture dissociation and mass spectrometry (UVPD-TIMS-q-ECD-ToF MS/MS)─is illustrated for the characterization of HeLa derived intact histone H4 proteoforms. The comparison between q-ECD-ToF MS/MS spectra and traditional Fourier-transform-ion cyclotron resonance-ECD MS/MS spectra of a H4 standard showed a similar sequence coverage (∼75%) with significant faster data acquisition in the ToF MS/MS platform (∼3 vs ∼15 min). Multiple mass shifts (e.g., 14 and 42 Da) were observed for the HeLa derived H4 proteoforms for which the top-down UVPD and ECD fragmentation analysis were consistent in detecting the presence of acetylated PTMs at the N-terminus and Lys5, Lys8, Lys12, and Lys16 residues, as well as methylated, dimethylated, and trimethylated PTMs at the Lys20 residue with a high sequence coverage (∼90%). The presented top-down results are in good agreement with bottom-up TIMS ToF MS/MS experiments and allowed for additional description of PTMs at the N-terminus. The integration of a 213 nm UV laser in the present platform allowed for UVPD events prior to the ion mobility-mass precursor separation for collision-induced dissociation (CID)/ECD-ToF MS. Selected c305+ UVPD fragments, from different H4 proteoforms (e.g., Ac + Me2, 2Ac + Me2 and 3Ac + Me2), exhibited multiple IMS bands for which similar CID/ECD fragmentation patterns per IMS band pointed toward the presence of conformers, adopting the same PTM distribution, with a clear assignment of the PTM localization for each of the c305+ UVPD fragment H4 proteoforms. These results were consistent with the biological "zip" model, where acetylation proceeds in the Lys16 to Lys5 direction. This novel platform further enhances the structural toolbox with alternative fragmentation mechanisms (UVPD, CID, and ECD) in tandem with fast, high-resolution mobility separations and shows great promise for global proteoform analysis.


Asunto(s)
Histonas , Espectrometría de Masas en Tándem , Humanos , Histonas/química , Espectrometría de Masas en Tándem/métodos , Electrones , Procesamiento Proteico-Postraduccional , Análisis de Fourier
14.
Metallomics ; 14(7)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35657675

RESUMEN

Abiogenic metals Pb and Hg are highly toxic since chronic and/or acute exposure often leads to severe neuropathologies. Mn2+ is an essential metal ion but in excess can impair neuronal function. In this study, we address in vitro the interactions between neuronal calcium sensor 1 (NCS1) and divalent cations. Results showed that non-physiological ions (Pb2+ and Mn2+) bind to EF-hands in NCS1 with nanomolar affinity and lower equilibrium dissociation constant than the physiological Ca2+ ion. (Kd, Pb2+ = 7.0 ± 1.0 nM; Kd, Mn2+ = 34.0 ± 6.0 nM; K). Native ultra-high resolution mass spectrometry (FT-ICR MS) and trapped ion mobility spectrometry-mass spectrometry (nESI-TIMS-MS) studies provided the NCS1-metal complex compositions-up to four Ca2+ or Mn2+ ions and three Pb2+ ions (M⋅Pb1-3Ca1-3, M⋅Mn1-4Ca1-2, and M⋅Ca1-4) were observed in complex-and similarity across the mobility profiles suggests that the overall native structure is preserved regardless of the number and type of cations. However, the non-physiological metal ions (Pb2+, Mn2+, and Hg2+) binding to NCS1 leads to more efficient quenching of Trp emission and a decrease in W30 and W103 solvent exposure compared to the apo and Ca2+ bound form, although the secondary structural rearrangement and exposure of hydrophobic sites are analogous to those for Ca2+ bound protein. Only Pb2+ and Hg2+ binding to EF-hands leads to the NCS1 dimerization whereas Mn2+ bound NCS1 remains in the monomeric form, suggesting that other factors in addition to metal ion coordination, are required for protein dimerization.


Asunto(s)
Calcio , Plomo , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Manganeso/metabolismo , Proteínas Sensoras del Calcio Neuronal , Neuropéptidos
15.
J Am Soc Mass Spectrom ; 33(7): 1267-1275, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35658468

RESUMEN

Trapped ion mobility spectrometry (TIMS) when coupled with mass spectrometry (MS) offers great advantages for the separation of isobaric, isomeric, and/or conformeric species. In the present work, we report the advantages of coupling TIMS with a low-cost, ultraviolet photodissociation (UVPD) linear ion trap operated at few mbars prior to time-of-flight (ToF) MS analysis for the effective characterization of isobaric, isomeric, and/or conformeric species based on mobility-selected fragmentation patterns. These three traditional challenges to MS-based separations are illustrated for the case of biologically relevant model systems: H3.1 histone tail PTM isobars (K4Me3/K18Ac), lanthipeptide regioisomers (overlapping/nonoverlapping ring patterns), and a model peptide conformer (angiotensin I). The sequential nature of the TIMS operation allows for effective synchronization with the ToF MS scans, in addition to parallel operation between the TIMS and the UVPD trap. Inspection of the mobility-selected UVPD MS spectra showed that for all three cases considered, unique fragmentation patterns (fingerprints) were observed per mobility band. Different from other IMS-UVPD implementations, the higher resolution of the TIMS device allowed for high mobility resolving power (R > 100) and effective mobility separation. The mobility selected UVPD MS provided high sequence coverage (>85%) with a fragmentation efficiency up to ∼40%.


Asunto(s)
Espectrometría de Movilidad Iónica , Péptidos , Espectrometría de Movilidad Iónica/métodos , Isomerismo , Espectrometría de Masas/métodos
16.
J Am Soc Mass Spectrom ; 33(7): 1092-1102, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35687872

RESUMEN

Although it is widely accepted that protein function is largely dependent on its structure, intrinsically disordered proteins (IDPs) lack defined structure but are essential in proper cellular processes. Mammalian high mobility group proteins (HMGA) are one such example of IDPs that perform a number of crucial nuclear activities and have been highly studied due to their involvement in the proliferation of a variety of disease and cancers. Traditional structural characterization methods have had limited success in understanding HMGA proteins and their ability to coordinate to DNA. Ion mobility spectrometry and mass spectrometry provide insights into the diversity and heterogeneity of structures adopted by IDPs and are employed here to interrogate HMGA2 in its unbound states and bound to two DNA hairpins. The broad distribution of collision cross sections observed for the apo-protein are restricted when HMGA2 is bound to DNA, suggesting that increased protein organization is promoted in the holo-form. Ultraviolet photodissociation was utilized to probe the changes in structures for the compact and elongated structures of HMGA2 by analyzing backbone cleavage propensities and solvent accessibility based on charge-site analysis, which revealed a spectrum of conformational possibilities. Namely, preferential binding of the DNA hairpins with the second of three AT-hooks of HMGA2 is suggested based on the suppression of backbone fragmentation and distribution of DNA-containing protein fragments.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Espectrometría de Movilidad Iónica , Animales , ADN/química , Proteínas Intrínsecamente Desordenadas/química , Mamíferos , Espectrometría de Masas , Conformación Molecular
17.
J Am Soc Mass Spectrom ; 33(7): 1103-1112, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35687119

RESUMEN

The mammalian high mobility group protein AT-hook 2 (HMGA2) is an intrinsically disordered DNA-binding protein expressed during embryogenesis. In the present work, the conformational and binding dynamics of HMGA2 and HMGA2 in complex with a 22-nt (DNA22) and a 50-nt (DNA50) AT-rich DNA hairpin were investigated using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) under native starting solvent conditions (e.g., 100 mM aqueous NH4Ac) and collision-induced unfolding/dissociation (CIU/CID) as well as solution fluorescence anisotropy to assess the role of the DNA ligand when binding to the HMGA2 protein. CIU-TIMS-CID-MS/MS experiments showed a significant reduction of the conformational space and charge-state distribution accompanied by an energy stability increase of the native HMGA2 upon DNA binding. Fluorescence anisotropy experiments and CIU-TIMS-CID-MS/MS demonstrated for the first time that HMGA2 binds with high affinity to the minor groove of AT-rich DNA oligomers and with lower affinity to the major groove of AT-rich DNA oligomers (minor groove occupied by a minor groove binder Hoechst 33258). The HMGA2·DNA22 complex (18.2 kDa) 1:1 and 1:2 stoichiometry suggests that two of the AT-hook sites are accessible for DNA binding, while the other AT-hook site is probably coordinated by the C-terminal motif peptide (CTMP). The HMGA2 transition from disordered to ordered upon DNA binding is driven by the interaction of the three basic AT-hook residues with the minor and/or major grooves of AT-rich DNA oligomers.


Asunto(s)
Proteína HMGA2 , Espectrometría de Movilidad Iónica , Animales , ADN/química , Proteína HMGA2/química , Proteína HMGA2/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Espectrometría de Masas en Tándem
18.
Anal Chem ; 94(16): 6139-6145, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35420029

RESUMEN

There is a need to better understand lipid metabolism during mosquito ovarian development. Lipids are the major source of energy supporting ovarian follicles development in mosquitoes. In this paper, we describe the complementary use of stable isotope labeling (SIL) and high-resolution mass spectrometry-based tools for the investigation of de novo triglycerides (TG) and diglycerides (DG) during the ovarian previtellogenic (PVG) stage (4-6 days posteclosion) of female adult Aedes aegypti. Liquid chromatography coupled to high-resolution trapped ion mobility spectrometry-parallel accumulation sequential fragmentation-time-of-flight tandem mass spectrometry (LC-TIMS-PASEF-TOF MS/MS) allowed the separation and quantification of nonlabeled and 2H/13C-labeled TG and DG species. Three SIL strategies were evaluated (H2O/2H2O with 50:50 and 95:5 mixtures, 13C-sucrose, and 13C-glucose). Results showed wide applicability with no signs of lipid ovarian impairment by SIL induced toxicity. The analytical workflow based on LC-TIMS-TOF MS/MS provided high confidence and high reproducibility for lipid DG and TG identification and SIL incorporation based on their separation by retention time (RT), collision cross section (CCS), and accurate m/z. In addition, the SIL fatty acid chain incorporation was evaluated using PASEF MS/MS. The 2H/13C incorporation into the mosquito diet provided information on how TG lipids are consumed, stored, and recycled during the PVG stage of ovarian development.


Asunto(s)
Culicidae , Diglicéridos/análisis , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Diglicéridos/química , Femenino , Espectrometría de Movilidad Iónica , Marcaje Isotópico , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
19.
J Am Soc Mass Spectrom ; 33(4): 681-687, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35258288

RESUMEN

To make the vast collections of well-documented human clinical samples archived in biobanks accessible for mass spectrometry imaging (MSI), recent developments have focused on the label-free top-down MS analysis of neuropeptides in sections of formalin-fixed, paraffin-embedded (FFPE) tissues. In analogy to immunohistochemistry (IHC), this variant of MSI has been designated MSHC (mass spectrometry histochemistry). Besides the detection and localization of neuropeptide and other biomolecular MS signals in these FFPE samples, there is great interest in their molecular identification and full characterization. We here used matrix assisted laser desorption ionization (MALDI) MSI employing ultrahigh-resolution FT-ICR MS on 2,5-dihydroxybenzoic acid (DHB) coated five-micron sections of human FFPE pituitary to demonstrate clear isotope patterns and elemental composition assignment of neuropeptides (with ∼1 ppm mass accuracy). Besides tandem MS fragmentation pattern analysis to deduce or confirm amino acid sequence information (Arg-vasopressin for the case presented here), there is a need for orthogonal primary structure characterization of the peptide-like MS signals of biomolecules desorbed directly off FFPE tissue sections. In the present work, we performed liquid extraction surface analysis (LESA) extractions on consecutive (uncoated) tissue slices. This enables the successful characterization by ion mobility MS of vasopressin present in FFPE material. Differences in sequence coverage are discussed on the basis of the mobility selected collision induced dissociation (CID), electron capture dissociation (ECD), and UV photodissociation (UVPD) MS/MS. Using Arg-vasopressin as model case (a peptide with a disulfide bridged ring structure), we illustrate the use of LESA in combination with a reduction agent for effective sequencing using mobility selected CID, ECD, and UVPD MS/MS.


Asunto(s)
Espectrometría de Movilidad Iónica , Neuropéptidos , Formaldehído/química , Humanos , Adhesión en Parafina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem
20.
Nucleic Acids Res ; 50(5): 2431-2439, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35212375

RESUMEN

The mammalian high mobility group protein AT-hook 2 (HMGA2) houses three motifs that preferentially bind short stretches of AT-rich DNA regions. These DNA binding motifs, known as 'AT-hooks', are traditionally characterized as being unstructured. Upon binding to AT-rich DNA, they form ordered assemblies. It is this disordered-to-ordered transition that has implicated HMGA2 as a protein actively involved in many biological processes, with abnormal HMGA expression linked to a variety of health problems including diabetes, obesity, and oncogenesis. In the current work, the solution binding dynamics of the three 'AT-hook' peptides (ATHPs) with AT-rich DNA hairpin substrates were studied using DNA UV melting studies, fluorescence spectroscopy, native ion mobility spectrometry-mass spectrometry (IMS-MS), solution isothermal titration calorimetry (ITC) and molecular modeling. Results showed that the ATHPs bind to the DNA to form a single, 1:1 and 2:1, 'key-locked' conformational ensemble. The molecular models showed that 1:1 and 2:1 complex formation is driven by the capacity of the ATHPs to bind to the minor and major grooves of the AT-rich DNA oligomers. Complementary solution ITC results confirmed that the 2:1 stoichiometry of ATHP: DNA is originated under native conditions in solution.


Asunto(s)
Secuencias AT-Hook , ADN , Animales , ADN/química , Proteínas del Grupo de Alta Movilidad/metabolismo , Mamíferos/genética , Desnaturalización de Ácido Nucleico , Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...